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The convergence in L2(T) of the even approximants of the Wall continued frac-
tions is extended to the Cesàro–Nevai class CN, which is defined as the class of
probability measures s with limnQ.

1
n;n−1

k=0 |ak |=0, {an}n \ 0 being the Geronimus
parameters of s. We show that CN contains universal measures, that is, probability
measures for which the sequence {|jn |2 ds}n \ 0 is dense in the set of all probability
measures equipped with the weak-* topology. We also consider the ‘‘opposite’’
Szegő class which consists of measures with ;.

n=0 (1 − |an |2)1/2 <. and describe it
in terms of Hessenberg matrices. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Denote by P the set of all probability measures on the unit circle T
equipped with the weak-* topology of the Banach space M(T) of all finite
complex Borel measures on T with variation norm. Given s ¥P the



sequence of orthonormal polynomials {jn}n \ 0 in the Hilbert space L2(ds)
is defined by

F
T

jnjk ds=dn, k, n, k ¥ Z+=def {0, 1, ...},

jn(s, z)=onzn+ · · · +jn(0), on > 0.

We always assume that the Borel support supp s, that is, the smallest closed
set with the complement having s-measure zero, is an infinite set on T.

A new approach to the study of Szegő, Erdős, Nevai, and Rakhmanov
measures is developed in a recent paper [19]. Recall that s ¥P is called a
Rakhmanov measure if

f− lim
nQ.

|jn |2 ds=dm

in P. Here and in what follows m stands for the normalized Lebesgue (arc)
measure on T. The importance of the Rakhmanov class R, introduced in
[19], can be easily demonstrated on the example of the inverse spectral
problem of wave propagation in stratified media. The problem is to recover
a measure s from a set (finite or infinite) of reflection coefficients

an=
def −

jn+1(0)
on+1

, n ¥ Z+,

which are also known as the Geronimus parameters of s. Although by
Favard’s theorem for the unit circle [3, 4, 19] the sequence {an}n \ 0
uniquely determines the measure s, the correspondence of parameters to
measures is unstable. For instance, it is shown in [19, Corollary 9.2] that
given any Szegő measure s, i.e., a measure with the Geronimus parameters
satisfying

C
.

n=0
|an |2 <., (1)

and an arbitrary e > 0, there exists a singular measure sg with the
Geronimus parameters {ag

n}n \ 0 which differ from {an}n \ 0 on an arbitrarily
rare subset L … Z+ and |ag

n | < e for n ¥ L. The latter means that for any set
of data satisfying (1) there always exists a singular measure with ‘‘practi-
cally the same’’ Geronimus parameters. However, it is proved in [19,
Theorem 4] that all such measures are in R. Therefore, dealing with the
inverse spectral problem it is natural to expect the existence of estimates for
the averages

1
m(I)

F
I

|jn |2 ds − 1,

I being an open arc on T, rather than for the density sŒ=ds/dm.
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Another important feature of R is that it is exactly the class of s ¥P
admitting the ratio asymptotics of Szegő type for monic orthogonal poly-
nomials [19, Theorem 7.4]. In the present paper we develop some tools to
extend beyond R the known methods of research.

Let Lim(s) stand for the derived set (i.e., the set of all limit points) in P
of the sequence |jn |2 ds. Regarding to the properties of Lim(s) the set
P0R splits into two big classes. The first one is the class Mar(T) of
Markoff measures s with the property m ¨ Lim(s). The rest is the class
Res(T) which is defined by m ¥ Lim(s). This classification was introduced
in a recent paper [21], in which more details are available. We only notice
that Mar(T) is opposite in a sense to R and Res(T). For instance, it is easy
to see that any measure s with supp s ] T is a Markoff measure, whereas
supp s=T for any measure in R and Res(T) since Lim(s) contains m.

Theorem 7.5 of [19] claims that the relation

lim
nQ.

1
n+1

C
n

k=0
|ak |=0 (2)

holds for the Geronimus parameters {an}n \ 0 of any Rakhmanov’s measure.
We call (2) the Cesàro–Nevai condition and the corresponding class of
measures the Cesàro–Nevai class or the CN class (recall that Nevai’s class
N is defined by limnQ. an=0).

It was Ya. L. Geronimus, who first paid attention to condition (2). In [8,
p. 128] he found a simple bound for the monic orthogonal polynomials
Fn=

def
o−1n jn

1
n+1

log sup
|z| [ 1

|Fn+1(z)| [
1

n+1
C
n

k=0
|ak |. (3)

Since for an arbitrary monic polynomial P the inequality sup|z| [ 1 |P| \ 1
holds we deduce from (2) and (3) that

lim
nQ.

sup
|z| [ 1

|Fn(z)|1/n=1. (4)

In other words, the sequence {Fn} is an extremal sequence for the closed
unit disk (see [24, Chap. 5, Proposition 5.3]).

This observation gives some hope that the orthogonal polynomials for
measures s ¥ CN behave regularly. As it turns out, this hope is justified to
some extent. To state the results obtained we need some preliminaries as
well as some basic facts from [19], which will be used repeatedly
throughout the whole paper.
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Recall that the Herglotz formula

F
T

z+z
z − z

ds(z)=
1+zf(z)
1 − zf(z)

(5)

establishes a one-to-one correspondence f=H(s) between s ¥P and the
functions from the unit ball B of the Hardy algebra H. in the unit disk
D={z: |z| < 1}, i.e., the set of holomorphic functions in D with

||f||.=def sup
|z| < 1

|f(z)| [ 1.

Equipped with the topology of uniform convergence on compact subsets of
D the set B is a compact metric space. Then the mapping H: PQB in (5)
is a homeomorphism. The function f=H(s) is called the Schur function
of s.

Given f ¥B, Schur’s algorithm

f(z)=f0(z)=
zf1(z)+a0
1+ā0zf1(z)

, ..., fn(z)=
zfn+1(z)+an

1+ānzfn+1(z)
, ... (6)

is uniquely defined by Schwartz’ lemma [5, 19]. The numbers {an}n \ 0 are
called the Schur parameters of f. If f=H(s), the Schur parameters of f
agree with the Geronimus parameters of s by Geronimus’ theorem [7, 19].
The functions {fn}n \ 0 in (6) are called the direct Schur functions of s.

From the definition of Schur’s algorithm (6) it follows that the Schur
parameters

Sf=(a0, a1, a2, ...)

of f ¥B form either an infinite sequence a=(an)n \ 0 with the domain
D(a)=Z+ (and in this case |an | < 1 for all n) or a finite sequence
a=(an)

k
n=0 with the domain D(a)=[0, k] (and in this case |an | < 1 for

n=0, 1, ..., k − 1 and |ak |=1). Note that

Sfn=(an, an+1, ...).

Let G. be the set of all complex sequences a which satisfy

|an | < 1, -n=0, 1, ..., if D(a)=Z+;

|an | < 1, 0 [ n < k, |ak |=1, if D(a)=[0, k].

It is clear that the set G. equipped with the topology of pointwise conver-
gence is a compact metric space.
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We proceed with two fundamental results from [19]. The first one is
actually contained in [19, Lemma 4.11] and the remark after it.

Theorem A. The mapping S: BQ G. is a homeomorphism of compact
metric spaces.

Thus we have a sequence of homeomorphisms

P0

H
B0

S
G..

To formulate the second result we introduce the inverse Schur functions
bn by the equality

bn(z)=def
jn(z)
jg
n (z)

, n ¥ Z+,

where jg
n (z)=def znjn(1/z̄). Since the zeros of jn lie in D (cf. [30,

Theorem 11.4.1]), it is easy to check that bn are finite Blaschke products.
The Szegő recurrence relations for the orthonormal polynomials [30,
formulae (11.4.6)–(11.4.7)] yield

bn+1(z)=
zbn(z) − ān
1 − anzbn(z)

, n ¥ Z+,

and hence

Sbn=(−ān−1, −ān−2, ..., 1).

We see that the parameters here follow in the reversed order.
We can now exhibit the following result (see [19, Theorem 3]).

Theorem B. Let s ¥P with the orthonormal polynomials {jn}n \ 0 and
the Schur functionH(s)=f. Then

H(|jn |2 ds)=fnbn, n ¥ Z+.

Schur’s algorithm can also be represented in the form of a continued
fraction

f(z)=a0+
(1 − |a0 |2) z

ā0z +
1
a1 +

(1 − |a1 |2) z
ā1z + · · · +

1
an +

(1 − |an |2) z
ānz + · · ·

(7)
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(see [19, 29]). The approximants An/Bn of order 2n for (7) converge to f
in B. We call the polynomials An, Bn of degree n the Wall polynomials
(of f). Since the even part of (7) is given by

f(z)=
a0
1 −

(1 − |a0 |2)(a1/a0) z
1+(a1/a0) z − · · · −

(1 − |an−1 |2)(an/an−1) z
1+(an/an−1) z − · · ·

,

(8)

An/Bn are the approximants of the Geronimus continued fraction (8).
The paper is organized as follows. The main technical tool of our inves-

tigation is the theory of strongly summable and almost convergent
sequences (cf. [32, Chap. 13.7]). We collect the required results in Section
2. One of the main results herein is Theorem 2.6, which seems to be new.

The CN class is studied in Section 3. We obtain a description of this class
in terms of the orthogonal polynomials as well as of functions associated
with the Schur function f=H(s). We also establish the relationship
between the CN class and the Cesàro–Rakhmanov class CR, which is
defined as the class of measures s ¥P with

f− lim
nQ.

1
n+1

C
n

k=0
|jk |2 ds=dm. (9)

This class appeared in a recent research of the first author on the zeros of
para-orthogonal polynomials [16]. It is shown in Theorem 3.1 that
CN … CR. One of the main results here is the following

Theorem 3.6. Let s ¥P with the Schur function f=H(s) and the Wall
polynomials {An}n \ 0, {Bn}n \ 0. Then

lim
nQ.

1
n+1

C
n

k=0
F
T

:f −
Ak
Bk
:2 dm=0

if and only if s is either singular or belongs to the Cesàro–Nevai class.

It is natural to expect that the number of ‘‘good’’ properties of the
orthogonal polynomials diminishes (and, conversely, the number of weird
properties increases) as soon as Lim (s) is getting larger. In Section 4 we
study the extreme case when Lim(s)=P or, in other words the sequence
{|jn |2 ds}n \ 0 is dense in P. We call such measures universal. The very exis-
tence of universal measures, which may exist only in Res(T), is far from
being obvious. However, not only universal measures do exist, but there
are so many of them that they penetrate into the relatively small class CN.
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Theorem 4.3. The Cesàro–Nevai class contains universal measures.

This result coupled with (4) shows that there are universal measures with
monic orthogonal polynomials forming an extremal sequence for the closed
unit disk. We also prove that any sequence of parameters {dn}n \ 0 (i.e.,
|dn | < 1 for all n ¥ Z+) which satisfy limnQ. |an − dn |=0, corresponds to a
universal measure as long as {an}n \ 0 does.

The universal measures are singular with respect to Lebesgue measure m
(Theorem 4.1), and hence their Schur functions are inner. By using
Frostman’s theorem we construct universal measures s with H(s) being a
Blaschke product.

As we already mentioned the class Mar(T) is opposite to both R and
Res(T). This observation allows one to obtain the opposite results to the
known ones in R. The idea is to replace the condition imposed on the
functionals which describe N or CN with the opposite conditions.

An important result in this respect was obtained by Máté, et al. in
[22, Theorem 4]. Consider the following functional

In(z)=def
1

|jn(z)|2
C
n

k=0
|jk(z)|2 [., |z| [ 1. (10)

Theorem [22, Theorem 4]. If s ¥ N, then

lim
nQ.

max
|z| [ 1

1
In(z)

=0.

Conversely, if limnQ. 1/In(z0)=0 at some point z0 ¥D, then s ¥ N.

It turns out that the version of this result for the CN class is true.

Theorem 5.1. For each s ¥ CN there exists a subset L … Z+ of density 1
such that

lim
n ¥ L

max
|z| [ 1

1
In(z)

=0.

Conversely, if limn ¥ L 1/In(z0)=0 for some z0 ¥D and some subset L … Z+
of density 1, then s ¥ CN.

For general measures from P the asymptotic behavior of the functionals
In as n Q. is rather unpredictable. By MNT’s theorem within Nevai’s
class In tends to infinity uniformly on T. Let G. be the class of measures in
P which satisfy

Cs(z)=def sup
n

In(z)=+., z ¥ T.
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Theorem 5.1 states that CN … G.. On the other hand, it is not hard to
estimate In(z) in terms of the distance dist(z, supp s). Indeed, consider the
Szegő kernel

Kn+1(z, z)=def C
n

k=0
jk(z) jk(z)=

jg
n (z) jg

n (z) − zz̄jn(z) jn(z)
1 − zz̄

(11)

(the latter equality is the Christoffel–Darboux formula [9, formula (1.7)]).
We have

In(z)=
Kn+1(z, z)

|jn(z)|2
=

1
|jn(z)|2

F
T

|Kn+1(z, z)|2 ds(z) [ 4 F
T

|jn(z)|2

|z − z|2
ds(z)

[
4

dist2(z, supp s)
(12)

for z ¥ T0 supp s. It is clear now that supp s=T for each s ¥ G..
We show in Section 5 (Proposition 5.3) that for s ¥P the function Cs

cannot be finite everywhere on T. That is why the ‘‘opposite’’ to G. class
G0 is defined as the class of measures for which Cs <. almost everywhere
with respect to Lebesgue measure m. It is clear from (12) that G0 contains
all singular measures with m(supp s)=0. For instance, the measures with
finite derived set of support [14, Section 3] belong to G0.

Similarly, let us introduce the ‘‘opposite’’ Szegő class OS. A measure s is
said to belong to OS if its Geronimus parameters satisfy

C
.

n=0
(1 − |an |2)1/2 <.. (13)

To justify the name of this class it is worth comparing (13) with (1) which
determines the Szegő class. To obtain the first one from the second we
replace the distance |an |=dist(an, 0) with 1 − |an |=dist(an, T) (i.e., replace
0 with the unit circle which is ‘‘opposed’’ to 0 in D) and take square root
instead of squaring (the opposite operation). It is proved in Theorem 5.7
that OS … G0. A number of explicit examples of measures from OS with the
Geronimus parameters tending to T exponentially fast are known (cf. [31,
Section 6]). One of them is presented in example 5.10.

The class OS can be described in terms of Hessenberg matrices. Recall
that the Hessenberg matrix of a measure s ¥P is defined by

Û(s)=R
u00 u01 · · ·

u10 u11 · · ·

x x z

S , uij=(U(s) jj, ji)m, (14)
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where U(s) h=zh(z), h ¥ L2(ds) is the unitary multiplication operator.
The matrix elements are given by the formulae

uij=˛ − aj āi−1 D
j−1

k=i
(1 − |ak |2)1/2, for i < j+1

(1 − |aj |2)1/2, for i=j+1

0, for i > j+1

(15)

(cf. [17, p. 401]) with a−1=−1.2 The main tool here is the (formal) series

2 The notation here is slightly different from [17].

expansion introduced in [17, p. 403]

U(s)=VgD−1(s)+C
.

j=0
Dj(s) V j, (16)

where V, Vg are the shift operators and Dj(s) are the diagonal operators

Dj(s)=diag(u0j, u1, j+1, ...)

in the basis {jn}n \ 0.
Let T=U |T|=U(TgT)1/2 be the polar decomposition of a bounded

linear operator T on a Hilbert space G. Here U is a partial isometry
mapping the range of Tg isometrically onto the range of T. Let S. be the
set of all compact operators. If T ¥S., then |T|=(TgT)1/2 ¥S.. The
eigenvalues of |T| are called the s-numbers sn(T) of T. The Schatten–
von Neumann classes Sp, 0 < p <., consist of operators with

||T||p=
def 1 C

.

n=0
spn(T)2

1/p

<.

(cf. [2, Chap. XI.9]). The class S1 is also known as the trace class or the
class of nuclear operators.

Theorem 5.8. s ¥ OS if and only if

U(s) − D0(s) ¥S1.

The diagonal of D0(s) is given by the vector

(ā0, −ā1a0, ..., −ānan−1, ...). (17)

Note that only a finite number of the entries in (17) may vanish for s ¥ OS.
If ānan−1 ] 0 we define yn ¥ T to be the closest point to − ānan−1 on T.
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Otherwise put yn=1. Denote by Clos{y0, y1, ...,} the closure of the set
{yn}n \ 0 on T.

Theorem 5.9. Let s ¥ OS with the monic orthogonal polynomials
{Fn}n \ 0. Then there is a holomorphic function H in the domain
Ĉ0Clos{y0, y1, ...,} which is not identically zero in both components of Ĉ0T
and such that

lim
nQ.

Fn+1(z)
(z − y0)(z − y1) · · · (z − yn)

=H(z)

uniformly on compact subsets of Ĉ0Clos{y0, y1, ...,}.

This theorem shows that for measures in OS the monic orthogonal
polynomials behave like polynomials with the roots on T.

The proof is based heavily on the notion of infinite determinants (cf. [11,
Chap. 4, Sect. 1]). Given A ¥S1, an infinite determinant det(I+A) is
defined by the formula

det(I+A)=def D
.

j=1
(1+lj(A)),

where lj(A), j \ 1 are the eigenvalues of A labelled in the decreasing order
of their moduli (each is counted according to its algebraic multiplicity). If
A(z) is a holomorphic operator-function on a region G with the values in
S1, then det(I+A(z)) is a holomorphic function on G.

Let {en}n \ 0 be an orthonormal basis in G. We let A correspond to its
matrix

A Q ||akj ||
.

k, j=0, akj=(Aej, ek)

in this basis, and a sequence of truncated n+1-dimensional operators
(matrices) An=||akj ||

n
k, j=0, n ¥ Z+. One of the basic properties of infinite

determinants is the following limit relation

det(I+A)= lim
nQ.

det(In+An), In=||dkj ||
n
k, j=0.

For holomorphic operator-functions A(z) we have

det(I+A(z))= lim
nQ.

det(In+An(z))

uniformly on compact subsets of G.
In Section 6 we discuss some further properties of functional In (10). It is

well known that it can be used for the solution of a mass point problem.
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Given s ¥P and a Dirac measure dz0 at some point z0 ¥ T, consider a

st=
def (1 − t) s+t dz0 , 0 [ t < 1. (18)

A class X …P will be called mass points invariant if st ¥ X provided
s0=s ¥ X. We show that CN is mass points invariant and give some
partial answer regarding the class R.

In Section 6 we also relate the functional In to the distribution of zeros of
orthogonal polynomials jn. Let l1n, l2n, ..., lnn be the zeros of jn for n \ 1
and let an be the argument of bn on T, that is, bn=exp(ian). Then

In(z)=1+C
n

j=1

1 − |ljn |2

|z − ljn |2
=1+ȧn(z), (19)

where ȧn=“an/“J.
For the reader’s (and author’s) convenience we complete the introduc-

tion with two well known results from Real and Complex Analysis. The
first one is the famous Lebesgue theorem on differentiation (cf. [2,
Theorem III.12.6]). We need a particular case related to the unit circle.

Given m ¥P we call an open arc I … T m-regular if its endpoints are not
m-masspoints.

Theorem (Lebesgue). Let m=mŒ dm+ms be Lebesgue’s decomposition of
m ¥P. Then for any sequence of m-regular arcs {In} such that z ¥ In and
limnQ. m(In)=0 the relation

lim
nQ.

m(In)
m(In)

=mŒ(z)

holds m-a.e.

The second result known as the Khinchin–A. Ostrowski theorem deals
with sequences of holomorphic functions in the unit disk (cf. [26, Chap. 2,
Sect. 7]). A special case pertaining to the class B is of our main concern.

Theorem (Khinchin–A. Ostrowski). Let {hn}n \ 0 be a sequence of func-
tions in B. Assume that their boundary values hn(z) converge in measure,
hn S h, on a set E … T of positive Lebesgue measure m(E) > 0. Then there is
a function ĥ ¥B such that hn Q ĥ in B, i.e., uniformly on compact subsets of
D, and ĥ=h a.e. on E.
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2. STRONG SUMMABILITY AND ALMOST CONVERGENCE

The Cesàro method of summability is closely related to the notions of
strongly summable and almost convergent sequences (cf. [32, Chap. 13.7]).

Definition. A sequence {sn}n \ 0 of complex numbers is called strongly
summable to limit s if

lim
nQ.

1
n+1

C
n

k=0
|sk − s|=0.

In the study of strongly summable sequences an important role is played
by those subsets L of the set Z+={0, 1, 2, ...} that have density 0 or 1.

Definition. A sequence (subset) L … Z+ is said to have a density d if

d(L)=def lim
nQ.

Card(L 5 {0, 1, ..., n})
n+1

=d

exists. Here Card X is the number of points in X.

As it has already been mentioned, we will primarily be interested in the
cases d=0, 1. Given L … Z+ we denote by Lc the complement Z+0L. The
following properties of the functional d(L) are quite obvious.

(i) d(Lc)=1 − d(L).

(ii) For k ¥ Z=def {..., −1, 0, 1, ...} let L+k={n+k : n ¥ L, n+k \ 0}
be a shift of L. Then d(L+k)=d(L).

(iii) The union (intersection) of a finite number of sequences of
density 0(1) is a sequence of density 0 (1).

Let L={n1 < n2 < ...}. It is clear from the definition that

d(L)=0(1) . lim
kQ.

k
nk

=0(1). (20)

Definition. A sequence {sn}n \ 0 of complex numbers is called almost
convergent to limit s if there is a sequence L … Z+ of density 1 such that
sn Q s as n Q. along L

lim
n ¥ L

sn=s.

By (iii) this type of convergence is well-defined.
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The following basic results on strongly summable and almost convergent
sequences can be found in [32, Theorem 13.7.2].

Proposition 2.1. Given a sequence {sn}n \ 0 of complex numbers, s ¥ C
and e > 0 denote by L(s, e)={n ¥ Z+ : |sn − s| [ e}. Then {sn} is an almost
convergent to s if and only if dL(s,e)=1 for all e > 0.

Proposition 2.2. If {sn}n \ 0 is strongly summable to s then {sn} is almost
convergent to s. Conversely, if {sn} is almost convergent to s and {sn} is
bounded then sn is strongly summable to s.

The next helpful property of sequences of density 1 is not that apparent.
We provide a proof for reader’s convenience.

Proposition 2.3. Let {Lk}k \ 1 be a denumerable set of sequences of
density 1. Then there exists a sequence L of density 1 such that

Card(L 5 Lck) <., k=1, 2, ... . (21)

Proof. Put Mn=4n
k=1 Lk. Then d(Mn)=1, n=1, 2, ... by (iii). Define

a sequence of indices N1 < N2 < · · · by the recipe

Card(Mk 5 [0, n])
n+1

> 1 −
1
k

, n > Nk, k=1, 2, ..., (22)

and consider the set

L=def [0, N1] 2 10
.

k=1
Mk 5 (Nk, Nk+1]2 .

Since {Mn} is a decreasing family of subsets in Z+, we have for
Nj < N [ Nj+1

L ‡ [0, N1] 2 1 0
j

m=1
Mm 5 (Nm, Nm+1]2 ‡ Mj 5 [0, Nj+1],

which implies that L 5 [0, N] ‡ Mj 5 [0, N] and

Card(L 5 [0, N])
N+1

\
Card(Mj 5 [0, N])

N+1
> 1 −

1
j

by (22). Hence d(L)=1. Next, Mj 5 Lck=” for j \ k by the definition of
the sets Mn, which proves (21). L
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The following simple consequence of Proposition 2.3 proves useful in the
sequel.

Corollary 2.4. Let {sn} be almost convergent to zero. Then there is a
sequence L of density 1 such that

lim
n ¥ L

sn+k=0 (23)

for each fixed k ¥ Z. In particular, {sn+k}n \ 0 is almost convergent to zero.

Proof. By the definition there is a sequence L0 with d(L0)=1 such that
sn Q 0, n ¥ L0. For k ¥ Z put Lk=L − k. Then sn+k Q 0, as n Q., n ¥ Lk.
Now by Proposition 2.3 we have a sequence L of density 1 with property
(21). It is clear that sn+k Q 0, n ¥ L for each fixed k ¥ Z, as claimed. L

The next result is adopted from [19, Theorem 7.5]. A simple proof of
this result was suggested by the referee. We present it here for the sake of
completeness. Note that the sequence {sn}n \ 0 below is not assumed to be
bounded.

Proposition 2.5. Let {sn}n \ 0 be a sequence of complex numbers such
that

lim
nQ.

snsn+k=0 (24)

for k=1, 2, ... . Then {sn}n \ 0 is almost convergent to zero.

Proof. Assume, on the contrary, that for some e > 0, the set

{n: |sn | > e}

does not have zero density (cf. Proposition 2.1). Then, there is an integer
k > 1 such that for every N \ 0 there exists an integer M > N+k such that,
with

A={n: N < n < M and |sn | > e}

we have Card(A) > 2M/k. Then the inequality k · 2M/k > M+k implies
that the sets A, A+1, A+2, ..., A+k − 1 cannot all be pairwise disjoint,
showing that

lim sup
nQ.

|snsn+j | \ e2

for some positive integer j < k. L
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Remark. We consider it necessary to include here the following remark
due to the referee which sheds some light on Proposition 2.5.

The result is certainly quite simple, but it has the following deep general-
ization:

Let m \ 2 be an integer and let {sn}n \ 0 be a sequence of complex numbers
such that

lim
nQ.

D
m−1

l=0
sn+kl=0

for every positive integer k. Then {sn}n \ 0 is almost convergent to 0.

This is a consequence of a strengthening of Endre Szemerédi’s famous
theorem: Every set S of positive upper density of positive integers includes
arbitrarily long arithmetic progressions.

The case m=2 is exactly Proposition 2.5.

Our final result provides equivalent definitions of almost convergent
sequences.

Theorem 2.6. Let {sn}n \ 0 be a sequence of complex numbers. The
following conditions are equivalent.

(i) {sn}n \ 0 is almost convergent to zero.
(ii) There is a sequence L … Z+ with d(L)=1 such that

limn ¥ L sn+k=0 for every k ¥ Z.

(iii) There is a sequence L … Z+ with d(L)=1 such that

lim
n ¥ L

snsn+k=0, k=1, 2, ... . (25)

Proof. (i) S (ii) by Corollary 2.4
(ii) S (iii) is obvious as both sn and sn+k tend to zero along L and so

does their product.
(iii) S (i) Define an auxiliary sequence

s −n=˛
sn, for n ¥ L,
0, for n ¨ L.

It is clear that s −ns
−

n+k Q 0 as n Q.. By Proposition 2.5 the sequence
{s −n}n \ 0 is almost convergent to zero. Hence s −n Q 0 along some sequence LŒ

of density 1. By restricting n to the sequence L 5 LŒ of density 1 (wherein
s −n=sn) we see that sn is almost convergent to zero, as needed. L
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3. THE CESÀRO–NEVAI CLASS

Let s be a probability measure on T with infinite support, {an}n \ 0 the
Geronimus parameters of s and {jn}n \ 0 the orthonormal polynomials in
L2(ds).

Definition. A measure s ¥P belongs to the Cesàro–Nevai class s ¥ CN if

lim
nQ.

1
n+1

C
n

k=0
|ak |=0. (26)

Since the Geronimus parameters of each probability measure lie in the
unit disk D, Proposition 2.2 says that s ¥ CN if and only if {an}n \ 0 is
almost convergent to 0. Clearly, Nevai’s class N is contained in CN.
Moreover, in view of [19, Theorems 4 and 7.5] Rakhmanov’s class R is
also contained in CN.

We begin with the characterization of the class CN in terms of the direct
Schur functions {fn}n \ 0 and the inverse Schur functions {bn}n \ 0 of s. For
s ¥P we call an open arc I s-regular if its endpoints do not contain atoms
of s.

Theorem 3.1. The following conditions are equivalent.

(i) s is in Cesàro–Nevai class.

(ii) The Schur functions fn, bn satisfy

lim
nQ.

1
n+1

C
n

k=0
|fk(z) bk(z)|=0.

(iii) The Schur functions fn satisfy

lim
nQ.

1
n+1

C
n

k=0
|fk(z)|=0.

(iv) The Schur functions bn satisfy

lim
nQ.

1
n+1

C
n

k=0
|bk(z)|=0.

The convergence in (ii)–(iv) is understood in B, i.e., uniformly on compact
subsets of D.

(v) There exists a subset L … Z+ with d(L)=1 such that

f− lim
n ¥ L

|jn |2 ds=dm.
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(vi) For any continuous function g on T the sequence

sn=F
T

g |jn |2 ds, n=0, 1, 2, ...

is strongly summable to s=>T g dm.
(vii) For any s-regular open arc I the sequence

sn=F
I

|jn |2 ds, n=0, 1, 2, ...

is strongly summable to s=m(I).

Proof. (i) S (ii), (iii), (iv). By Proposition 2.2 and Corollary 2.4 there
exists a subset L … Z+ with d(L)=1 such that limn ¥ L an+k=0 holds for
every k ¥ Z. Since

Sfn=(an, an+1, ...), Sbn=( − ān−1, −ān−2, ..., 1) (27)

we have by Theorem A limn ¥ L fn=limn ¥ L bn=0 in B. It is clear that all
three sequences {fnbn}n \ 0, {fn}n \ 0, {bn}n \ 0 are strongly summable to zero
by Proposition 2.2.

(iii), (iv) S (ii) is obvious since |fn | [ 1, |bn | [ 1.
(ii) S (i). Let {zj}j \ 0 be any sequence in D with zn Q z0 as n Q.. For

each j the sequence {fn(zj) bn(zj)}n \ 0 is almost convergent to zero. Let Lj
be the corresponding subset of Z+ of density 1. By Proposition 2.3 we can
choose L … Z+ with d(L)=1 such that

lim
n ¥ L

fn(zj) bn(zj)=0, j ¥ Z+.

The normal family argument provides limn ¥ Lfnbn=0 in B.
The following reasoning is only a slight modification of that in [19,

Sect. 7, p. 222]. Let L1=L 5 (L − 1). We will show that

lim
n ¥ L1

anan+k=0, k=1, 2, ... . (28)

By the definition of bn and Schur’s algorithm we have

zbnfn=
bn+1+ān
1+anbn+1

zfn+1+an
1+ānzfn+1

.
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Taking into account that limn ¥ L1 fnbn=limn ¥ L1 fn+1bn+1=0 we obtain as
in [19, formula (7.12)]

lim
n ¥ L1

(anbn+1(z)+|an |2+ānzfn+1(z))=0

and (28) follows (see [19, Lemma 7.3]). The rest is plain by Theorem 2.6.
(i) S (v). By Proposition 2.2 and Theorem 2.6 there exists a subset

L … Z+ with d(L)=1 such that

lim
n ¥ L

anan+k=0 (29)

holds for every k ¥ Z. Next, by [19, formula (7.10)]

:F
T

zk |jn |2 ds :[ 2(|an |+|an+1 |+· · · +|an+k−1 |)(|an−k |+|an−k−1 |+· · · +|an−1 |)

(30)

holds for every k=1, 2, ... and n > k. Hence (30) along with (29) gives

lim
n ¥ L

F
T

zk |jn |2 ds=0, k=1,2,...,

which implies (v).
(v) S (ii). By Theorem B, fnbn is the Schur function of the measure

|jn |2 ds. As above, we see that {fnbn}n \ 0 is strongly summable to zero uni-
formly on compact subsets of D.

(v) Z (vi). Part (v) implies (vi) by Proposition 2.2. Conversely, let B0 be
the unit ball of the space C(T) of all continuous functions on T. Pick any
countable everywhere dense set {f(k)}k \ 0. By Proposition 2.2. for every k
there exists a subset Lk … Z+ with d(Lk)=1 such that

lim
n ¥ Lk

F
T

f (k) |jn |2 ds=F
T

f (k) dm.

In view of Proposition 2.3 there is a subset L … Z+ with d(L)=1 such that

lim
n ¥ L

F
T

f (k) |jn |2 ds=F
T

f (k) dm,

which implies (v).
(v) Z (vii). Part (v) implies (vii) by Helly’s Theorem and Proposition 2.2.

Conversely, pick any dense countable subset S … T of s-measure zero and

204 GOLINSKII AND KHRUSHCHEV



denote by G(S) a countable set of open arcs with endpoints at S (all of
them are s-regular). In view of Proposition 2.3 there is a subset L … Z+ of
density 1 such that

lim
n ¥ L

F
I

|jn |2 ds=m(I), -I ¥ G(S).

Next, given f ¥ C(T), and e > 0, find a finite collection of pairwise
disjoint arcs Ij ¥ G(S) that form a partition of T such that the oscillation of
f over each Ij is less than e. Define a piecewise constant function fe by the
equality

fe(z)=
1

m(Ij)
F
Ij

f dm, z ¥ Ij.

It is clear that |f − fe | < e. On the other hand, by the construction

lim
n ¥ L

F
T

fe |jn |2 ds=F
T

fe dm

and (v) follows. L

It is proved in [19, Theorem 4] that Nevai’s class N is a proper subset of
Rakhmanov’s class R.

Definition. A measure s ¥P belongs to the Cesàro–Rakhmanov class
s ¥ CR if

f− lim
nQ.

1
n+1

C
n

k=0
|jk |2 ds=dm. (31)

Theorem 3.1 (vi) states that CN … CR.

Proposition 3.2. We have s ¥ CR if and only if

lim
nQ.

1
n+1

C
n

k=0

fkbk
1 − zfkbk

=0 (32)

uniformly on compact subsets of D.

Proof. It is immediate from Theorem B that

F
T

z+z
z − z

1
n+1

C
n

k=0
|jk |2 ds=

1
n+1

C
n

k=0

1+zfk(z) bk(z)
1 − zfk(z) bk(z)

.

The rest is plain. L
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For the orthonormal polynomials {jn}n \ 0 in L2(ds) we define the
following functions on T associated with s ¥P:

t2n=
def 1

n+1
C
n

k=0
|jk |2, n ¥ Z+, (33)

and

gn=
def 2 |jn |2 sŒ

1+|jn |2 sŒ
, n ¥ Z+. (34)

Since 2x(1+x)−1 is a concave function and 1/x is a convex function on
(0, +.), we have by Jensen’s inequality

1
n+1

C
n

k=0
gk [

2t2n sŒ

1+t2n sŒ
(35)

and

1
t2n

=
n+1

;n
k=0 |jk |2

[
1

n+1
C
n

k=0

1
|jk |2

. (36)

Proposition 3.3. For any limit point m of the sequence {t−2n dm}n \ 0 and
every s-regular arc I

m(I) [ s(I) (37)

holds. In particular, the set of m mass points is included in the set of s mass
points. Moreover, if s ¥ CR then mŒ=sŒ m-a.e. on T.

Proof. Integrate (36) over I and make n Q. along an appropriate
subsequence L … Z+, taking into account that f− limnQ. |jn |−2 dm=ds

(cf. [27, Lemma 1]). An application of Lebesgue’s theorem on differentia-
tion to (37) leads to mŒ [ sŒ m-a.e. on T.

To prove the last statement we show that the equality sign prevails in the
latter inequality whenever s ¥ CR. In fact, by Cauchy’s inequality

1
m(I)

F
I
`sŒ dm [ 1 1

m(I)
F
I

1
n+1

C
n

k=0
|jk |2 ds2

1/2 1 1
m(I)

F
I

dm
t2n
21/2. (38)

Since I is s-regular, the first factor on the right-hand side of (38) tends to 1
as n Q.. Hence

1
m(I)

F
I
`sŒ dm [ 1 m(I)

m(I)
21/2.
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Again, by Lebesgue’s theorem on differentiation sŒ [ mŒ m-a.e. on T, and
the statement follows. L

The next result can be viewed as the Cesàro version of [19,
Theorem 6.3].

Theorem 3.4. Let s be in the Cesàro–Rakhmanov class and let E(s)=def

{sŒ > 0}. Then for gn and tn defined in (33)–(34)

lim
nQ.

1
n+1

C
n

k=0
F
E(s)

(gk − 1)2 dm=0 (39)

and

lim
nQ.

F
E(s)

1 2t2n s −

1+t2n s −
− 12

2

dm=0. (40)

Proof. Let h, H, y, Y be limit points of the sequences

hn=
1

n+1
C
n

k=0
gk, Hn=

1
n+1

C
n

k=0
g2k, yn=

2t2n sŒ

1+t2n sŒ
, Yn=y2n (41)

of bounded measurable functions in the weak-* topology of L.(T). We
claim that for each arc I

lim sup
nQ.

1
m(I)

F
I

zn dm [ 1, (42)

where zn=hn, Hn, yn, Yn. Since by Cauchy’s inequality (for integrals and
sums)

1 1
m(I)

F
I

hn dm2
2

[
1

m(I)
F
I

h2n dm [
1

m(I)
F
I

Hn dm,

1 1
m(I)

F
I

yn dm2
2

[
1

m(I)
F
I

Yn dm,

it suffices to prove (42) for zn=Hn and zn=Yn.
As in [19, Lemma 6.2] we introduce an auxiliary function

F(x)=˛
x, for 0 [ x < 1,

4x2

(1+x)2
, for 1 [ x <.,

(43)
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which is an increasing, concave function on (0,.) and satisfies

F(x) \
4x2

(1+x)2
, 0 [ x <.. (44)

We see that g2k=F(|jk |2 sŒ). Now for zn=Hn in (41) we have by (44) and
Jensen’s inequality

1
m(I)

F
I

Hn [
1

m(I)
F
I

1
n+1

C
n

k=0
F(|jk |2 sŒ)

[ F 1 1
n+1

C
n

k=0

1
m(I)

F
I

|jk |2 ds2Q F(1)=1

as n Q., for s ¥ CR. The argument for zn=Yn is quite the same, and (42)
follows. Lebesgue’s theorem on differentiation applied to (42) shows that

max(h, H) [ 1, max(y, Y) [ 1 (45)

m-a.e. on T.
To prove (39) take any s-regular arc I and apply three times Cauchy’s

inequality (for sums and integrals)

1
m(I)

F
I
`sŒ dm=

1
m(I)

F
I

1
n+1

C
n

k=0

`2 |jk |`sŒ

1+|jk |2 sŒ1/2

1+|jk |2 sŒ1/2

`2 |jk |
dm

[
1

m(I)
F
I

1 1
n+1

C
n

k=0
gk 2

1/2 1 1
n+1

C
n

k=0

1+|jk |2 sŒ

2 |jk |2
21/2

[ 1 1
m(I)

F
I

1
n+1

C
n

k=0
gk dm2

1/2

×1 1
n+1

C
n

k=0

1
2m(I)

F
I

3 1
|jk |2

+sŒ 4 dm2
1/2

[ 1 1
m(I)

F
I

1
n+1

C
n

k=0
g2k dm2

1/4

×1 1
n+1

C
n

k=0

1
2m(I)

F
I

3 1
|jk |2

+sŒ 4 dm2
1/2

.
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By passing to the limit as n Q. we obtain

1
m(I)

F
I
`sŒ dm [ 1 1

m(I)
F
I

h dm2
1/2 1 s(I)

m(I)
21/2,

1
m(I)

F
I
`sŒ dm [ 1 1

m(I)
F
I

H dm2
1/4 1 s(I)

m(I)
21/2.

Lebesgue’s theorem on differentiation yields 1 [ min(h, H) m-a.e. on E(s).
The latter inequality coupled with the first one in (45) and the equality zn=0
on T0E(s) gives h=H=1E, 1E being the indicator of the set E(s). Now

lim
nQ.

1
n+1

C
n

k=0
F
E(s)

(gk − 1)2 dm= lim
nQ.

F
E(s)

1
n+1

C
n

k=0
g2k dm

− 2 lim
nQ.

F
E(s)

1
n+1

C
n

k=0
gk dm+m(E(s))=m(E) − 2m(E)+m(E)=0.

The proof of (40) goes along the same line of reasoning. Again, by
Cauchy’s inequality

1
m(I)

F
I
`sŒ dm=

1
m(I)

F
I

`2 tn `sŒ

(1+t2nsŒ)
1/2

(1+t2nsŒ)
1/2

`2 tn
dm

[ 1 1
m(I)

F
I

2 t2nsŒ

1+t2nsŒ
dm2

1/2 1 1
2m(I)

F
I

3 1
t2n

+sŒ 4 dm2
1/2

[ 1 1
m(I)

F
I

3 2t2nsŒ

1+t2nsŒ
42 dm2

1/4 1 1
2m(I)

F
I

3 1
t2n

+sŒ4 dm2
1/2

.

Let now n Q. along subsequences L1, L2 such that

f− lim
n ¥ L1

2t2nsŒ

1+t2nsŒ
=y, f− lim

n ¥ L2

1 2t2nsŒ

1+t2nsŒ
22=Y

in L.(T). By Proposition 3.3 we conclude that

1
m(I)

F
I
`sŒ dm [ 1 1

m(I)
F
I

y dm2
1/2 1 s(I)

m(I)
21/2,

1
m(I)

F
I
`sŒ dm [ 1 1

m(I)
F
I

Y dm2
1/4 1 s(I)

m(I)
21/2.

The rest is the same as above. L
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As a direct consequence of (40) we have t2n S 1/sŒ on E(s), where S

stands for the convergence in measure.3

3 Geronimus’ conjecture claims that t2n Q 1/sŒ m-a.e. on T as long as E(s)=T.

By using Theorem 3.4 we can give another description of the Cesàro–
Nevai class.

Theorem 3.5. Let s be a nonsingular measure in P with the Schur func-
tions (direct and inverse) {fn}n \ 0, {bn}n \ 0. The following statements are
equivalent.

(i) s is in the Cesàro–Nevai class.

(ii) s is in the Cesàro–Rakhmanov class and

1
n+1

C
n

k=0
fk(z) bk(z)=0 (46)

uniformly on compact subsets of D.

(iii) There exists a subset L … Z+ with d(L)=1 such that

lim
n ¥ L

F
E(s)

|fn |2 dm=0, E(s)={sŒ > 0}.

Proof. (i) S (ii) is proved in (ii), Theorem 3.1.
(ii) S (iii). We begin with the following identity (cf. [19, formula (6.4)])

|fk |2=
1 − |jk |2 sŒ

1+|jk |2 sŒ
+R(zbkfk)+

|jk |2 sŒ− 1
1+|jk |2 sŒ

R(zbkfk)

=1 − gk+R(zbkfk)+(gk − 1) R(z bk fk),

where z ¥ T and gk are defined in (34). Taking here the averages over k we
obtain

1
n+1

C
n

k=0
|fk |2=

1
n+1

C
n

k=0
(1 − gk)+R 3 1

n+1
C
n

k=0
zbkfk 4

+
1

n+1
C
n

k=0
(gk − 1) R(zbkfk)

[
2

n+1
C
n

k=0
|gk − 1|+R 3 1

n+1
C
n

k=0
zbkfk 4 . (47)
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Since 1
n+1;n

k=0 fkbk ¥B, (46) implies the convergence of this sequence to 0
in the weak-f topology of L.(T), so that we may integrate (47) over E(s)
and make n Q. to get

1
n+1

C
n

k=0
F
E(s)

|fk |2 dm [
2

n+1
C
n

k=0
F
E(s)

|gk − 1| dm+o(1)

[
2 |E(s)|1/2

n+1
C
n

k=0

1F
E(s)

(gk − 1)2 dm2
1/2

+o(1)

[ 2 |E(s)|1/2 3 1
n+1

C
n

k=0
F
E(s)

(gk − 1)2 dm4
1/2

+o(1).

The result is now immediate from (39) and Proposition 2.2.
(iii) S (i). Since s is assumed to be nonsingular, we have m(E(s)) > 0

and by Khinchin–A. Ostrowski theorem limn ¥ L fn=0 in B. It remains to
note that an=fn(0) and apply Proposition 2.2. L

It is worth comparing the equivalence (i) Z (iii) with [19, Corollary 8.3],
where the similar result for Nevai’s class is presented.

Theorem 3.5 can be used to obtain the following result on the conver-
gence of Geronimus continued fractions. We adopt here the argument from
[19, Sect. 8].

Theorem 3.6. Let s ¥P with the Schur function f=H(s) and the Wall
polynomials {An}n \ 0, {Bn}n \ 0. Then

lim
nQ.

1
n+1

C
n

k=0
F
T

:f −
Ak
Bk
:2 dm=0 (48)

if and only if s is either singular or belongs to the Cesàro–Nevai class.

Proof. Suppose first that s is nonsingular and (48) holds, so that

lim
n ¥ L

F
E(s)

:f −
An
Bn
:2dm=0 (49)

for some L with d(L)=1. It is immediate from (49) that An/Bn S f,
An+1/Bn+1 S f in measure on E(s) for n ¥ L1=L 5 (L − 1), d(L1)=1. As
in [19, formula (8.11)] we have

F
E(s)

:An+1
Bn+1

−
An
Bn
: dm=

|an+1 |

`1 − |an+1 |2
F
E(s)

11 − :An+1
Bn+1
:221/2 11 − :An

Bn
:221/2 dm,
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which coupled with (49) and m(E(s)) > 0 implies

lim
n ¥ L1

|an+1 |

`1 − |an+1 |2
=0

and therefore an is almost convergent to 0, that is s ¥ CN.
Conversely, let s be a nonsingular measure from the CN class. In view of

the relation between the Schur functions fn and the Wall approximants
An/Bn (see [19, formula (8.8)]) we see that

:f −
An
Bn
:2=|fn+1 |2 :1 −

An
Bn

f :
2

[ 4 |fn+1 |2,

which implies (49) for some L with d(L)=1 by (iii) of Theorem 3.5 . By
[19, Lemma 8.1] the (49) holds for integrals taken over the whole unit
circle, and (48) follows.

For singular measures the Wall approximants are known to converge
to the Schur function f in L2(T) (see [19, Lemma 8.1]), which is even
stronger than (48). L

We complete the section with the characterization of the Cesàro–Nevai
class in terms of the weak-* convergence of certain complex Borel mea-
sures. The idea here goes to P. Nevai (private communication), who proved
the following4

4 We thank Paul Nevai for his permission to include this result here.

Theorem. A measure s ¥P belongs to Nevai’s class, i.e., limnQ.

an(s)=0 if and only if

f− lim
nQ.

z ljnjn+l ds=dm -l=0, 1, ... .

The Cesàro version of this result is readily apparent.

Theorem 3.7. A measure s ¥P belongs to the Cesàro–Nevai class if and
only if

f− lim
nQ.

1
n+1

C
n

k=0
z ljkjk+l ds=dm -l=0, 1, ... . (50)

Proof. Pick any measure s from the CN class. Then it obviously
belongs to the CR class. Note that (50) with l=0 is precisely the
Cesàro–Rakhmanov condition, and hence (50) holds with l=0. We are
going to reduce the general case l ¥ Z+ to this special one.
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Let jn=onzn+..., on > 0 be orthonormal polynomials in L2(s). We start
out with the following known relation which stems directly from the
orthogonality conditions and the formula for the leading coefficients (see
[9, formula (8.6)]):

F
T

z ljk(z) jk+l(z) ds=
ok

ok+l
=D

l

j=1
(1 − |ak+j |2)1/2. (51)

Let l \ 1 and f ¥ C(T). Then by Cauchy’s inequality

:F
T

fz ljkjk+l ds −F
T

f |jk |2 ds :

[ 1F
T

|fjk |2 ds2
1/2 1F

T
|z ljk − jk+l |2 ds2

1/2

.

The first factor on the right-hand side does not exceed ||f||.. As for the
second one, it can be computed explicitly in view of (51)

F
T

|z ljk − jk+l |2 ds=2 11 −
ok

ok+l
2=2 11 − D

l

j=1
(1 − |ak+j |2)1/22 .

By Corollary 2.4, s ¥ CN implies limk ¥ L1 ak+j=0 for some subset L1 … Z+
of density 1 and for all integers j. Therefore

lim
k ¥ L1

:F
T

fz ljkjk+l ds −F
T

f |jk |2 ds :=0.

On the other hand, by (v), Theorem 3.1 there is a subset L2 … Z+ of density
1 such that

lim
k ¥ L2

F
T

f |jk |2 ds=F
T

f dm, -f ¥ C(T).

Hence

lim
k ¥ L3

F
T

fz ljkjk+l ds=F
T

f dm

for the subset L3=L1 5 L2 of density 1 and for all nonnegative integers l.
(50) now follows from Proposition 2.2.
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The converse statement is much easier. Take in (50) l=1 and f=1. By
(51)

lim
nQ.

1
n+1

C
n

k=0
F
T

zjkjk+1 ds= lim
nQ.

1
n+1

C
n

k=0
(1 − |ak+1 |2)1/2=1,

whence it follows that an is strongly convergent to zero, as needed. L

4. UNIVERSAL MEASURES

Definition. A probability measure s on T is called universal if the
sequence {|jn |2 ds}n \ 0 is dense in P.

In view of Theorem B the definition can be paraphrased in terms of the
direct and inverse Schur functions {fn}n \ 0 and {bn}n \ 0 as follows.

A probability measure s on T is universal if and only if the sequence
{fnbn}n \ 0 is dense in B.

The very existence of universal measures is far from being obvious.
However, it is easy to establish some properties of such measures.

Theorem 4.1. Let the Dirac measure dl at some point l ¥ T be a limit
point of the sequence {|jn |2 ds}n \ 0. Then s is singular. In particular, each
universal measure is singular.

Proof. Since the Schur function of dl is constant l̄, Theorem B implies
limn ¥ D fnbn=l̄ uniformly on compact subsets of D for some infinite sub-
sequence D … Z+. But fn(0)=an, bn(0)=−ān−1 (see (27)), so that limn ¥ D

an ān−1=−l̄. Hence lim supnQ. |an |=1 and s is singular by Rakhmanov’s
Lemma [28, Lemma 4, p. 110] (see also [19, Corollary 9.5]). L

It is clear that for universal measures the derived set of the sequence
{an ān−1}n \ 1 contains the unit circle, for each Dirac mass dl is a limit point
of {|jn |2 ds}n \ 0.

Proposition 4.2. Let s be a universal measure. Then

(i) The set {an ān−1}n \ 1 is dense in D. In particular, lim infnQ.
|an |=0.

(ii) supp s=T.

Proof. (i) By the definition of universal measures and Theorem B
each function s ¥B is a limit point of the sequence {fnbn}n \ 0 and hence, as
in Theorem 4.1, for each w ¥D limn ¥ D an ān−1=w for some D … Z+.

(ii) If there were an open arc I with I 5 supp s=”, then for l ¥ I
the Dirac measure dl could not be the limit point of {|jn |2 ds}n \ 0. L
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There are obviously no universal measures in Rakhmanov’s class R (and
the more so, in Nevai’s class N). Amazingly enough, the Cesàro–Nevai
class which is presumably quite close to N, contains such measures (in fact,
plenty of them).

Theorem 4.3. There are universal measures in the Cesàro–Nevai class.

Proof. We proceed in two steps.

Step 1. Here is the main ingredient of the whole construction.
Let P, Q ¥B with the infinite number of Schur parameters

SP=(p0, p1, ...), SQ=(q0, q1, ...)

that is, P, Q are not finite Blaschke products, and put H=PQ. Take
C … Z+ to be a union of disjoint intervals of nonnegative integers

C=0
.

k=1
[nk − mk, nk+mk]

with mk Q. as k Q.. Define a function

f ¥B, Sf={a0, a1, ...}

as

aj=
def pj−nk , nk [ j [ nk+mk; aj=

def − q̄nk −j−1, nk − mk [ j [ nk − 1

and arbitrarily on the complement Cc. Let fn and bn be the Schur functions
(direct and inverse) of f. Then for n=nk

Sfn=(p0, p1, ..., pmk , ...), Sbn=(q0, q1, ..., qmk −1, ...).

By Theorem A

lim
n ¥ D

fn(z)=P(z), lim
n ¥ D

bn(z)=Q(z), D=def {n1 < n2 < · · · }

in B, and hence

lim
n ¥ D

fnbn=H. (52)

Let s, n ¥P be measures which correspond to f and H, respectively, and
let {jn}n \ 0 be the orthonormal system in L2(ds). By Theorem B (52)
means that n=limn ¥ D |jn |2 ds.
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Step 2. Given positive integers r and s denote by Lrs the set of integers

Lrs=
def [22

r(2s−1), 22
r(2s−1)+2s]=[nrs − mrs, nrs+mrs].

Let us first check that the sets Lrs are pairwise disjoint. Indeed, suppose
that there is an integer k with

22
r(2s−1) < 2k [ 22

r(2s−1)+2s

or

2 r(2s − 1) < k < 2 r(2s − 1)+log2 11+
2s

2 r(2s − 1)
2 .

But

log2 11+
2s

2 r(2s − 1)
2 < 2s

2 r log 2(2s − 1)
<

1
2 r−1 log 2

< 1

for r \ 2. The same is true for r=1 and s \ 2 as well. Finally, the segment
L11=[4, 6] contains no points 2k with k > 2, as claimed.

It is clear that Card Lrs=2s+1. We show that

d(L)=0, L=def 0
.

r, s=1
Lrs.

Fix a big positive number N. The number of indices k which satisfy 2k < N
does not exceed log2 N. If k=2r(2s − 1) then s [ k < log2 N. It follows that

Card(L 5 [0, N]) [ (2 log2 N+1) log2 N,

which yields d(L)=0.
Next, take a sequence of polynomials {Hl}l \ 0 dense in B. The corre-

sponding sequence of measures {nl}l \ 0 from Step 1 is clearly dense in P.
Each Hl can be factored as Hl=PlQl, where none of the functions Pl, Ql is
a finite Blaschke product. Put

Ll=
def 0

.

s=1
Lls=0

.

s=1
[nls − mls, nls+mls], l=1, 2, ...

and apply the procedure from Step 1 to each collection Ll, Pl, Ql, Hl with
l=1, 2, ... . Thereby the Schur parameters an of the function f ¥B (these
are the same as the Geronimus parameters of the measure s) are already
determined for n ¥ L. For the rest of indices we define an to meet
limn ¥ Lc an=0. According to the construction in Step 1, for each l \ 1 there
is a subset Dl … Z+ such that

lim
n ¥ Dl

fn(z)=Pl(z), lim
n ¥ Dl

bn(z)=Ql(z), lim
n ¥ Dl

fn(z) bn(z)=Hl(z)
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in B (cf. (52)). By Theorem B the latter means that the each measure nl is
the limit point of the measures |jn |2 ds, and thus s is the universal
measure. Finally, limn ¥ Lc an=0 for the subset Lc … Z+ of density 1, that is
s ¥ CN. The proof is complete. L

Remark. There is a large arbitrariness in the definition of Geronimus
parameters on Lc. We can take advantage of such freedom to have
universal measures with some added properties. For instance, we can find
universal measures in CN for which {an}n \ 0 is dense in D.5 Indeed, write

5 Note that this property does not necessarily follow from (i), Proposition 4.2.

Lc=I0 2 0
.

k=1
Ik

with pairwise disjoint and nonempty subsets Ik and d(I0)=1. Pick any
dense set {wk} in D and define an=0, n ¥ I0,

an=ws, n ¥ 0
.

r=0
I2r(2s−1), s=1, 2, ... .

Next, if we put an=a, a ] 0, for n ¥ Lc, we arrive at the universal
measure s in the Cesàro–Geronimus class:

lim
nQ.

1
n+1

C
n

k=0
|ak(s) − a|=0.

For the further discussion of this class as well as the related class of Jacobi
matrices see [15]. Note that if limnQ. |an − a|=0 for some a ] 0, then by
[6, Theorem 1Œ] the support supp s of the corresponding measure is a
proper subset of T, that is, the measure cannot be universal (see (ii), Pro-
position 4.2).

We show next that the class of universal measures is stable under certain
perturbations of the Geronimus parameters.

Theorem 4.4. Let s be a universal measure with the Geronimus param-
eters {an}n \ 0. Let {cn}n \ 0 satisfy |an+cn | < 1 and cn Q 0 as n Q.. Then the
measure m with the Geronimus parameters an+cn is also universal.

Proof. Let f ¥B correspond to s with the Schur functions fn and bn.
By the definition of universal measures and Theorem B, given H ¥B there
is a sequence LŒ=LŒ(H) such that limn ¥ LŒ fnbn=H in B. The normal
family argument applied to both fn and bn shows that in fact

lim
n ¥ L

fn(z)=P(z), lim
n ¥ L

bn(z)=Q(z)
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in B for some subsequence L … LŒ. By Theorem A for each fixed k=
0, 1, ...

lim
n ¥ L

an+k=pk, lim
n ¥ L

− ān−k−1=qk.

Since cn Q 0, we have

lim
n ¥ L

(an+k+cn+k)=pk, lim
n ¥ L

( − ān−k−1 − c̄n−k−1)=qk.

Let g ¥B correspond to m with the Schur functions gn and dn. Again,
application of Theorem A yields

lim
n ¥ L

gn(z)=P(z), lim
n ¥ L

dn(z)=Q(z)

so that limn ¥ L gndn=PQ=H in B, as needed. L

We prove now that the class of universal measures is closed with respect
to certain operations on Schur parameters.

Proposition 4.5. Let s be a universal measure with the Geronimus
parameters {an}n \ 0, and let l ¥ T. Consider the family of measures {sl} with
the Geronimus parameters {lan}n \ 0. Then {sl} is universal for all l.

Proof. Let fn, bn and fln, bln be the direct and inverse Schur functions of
s and sl, respectively. Then fln=lfn, n ¥ Z+. For the Schur parameters of
bln we have

Sbln=( − lan−1, −lan−2, ..., −la0, 1),

and hence

bln(z)=l̄bn(z)+O(zn), fln(z) bln(z)=fn(z) bn(z)+O(zn), z Q 0.

Therefore the sequences {flnb
l
n}n \ 0 and {fnbn}n \ 0 have the same limit

points in B. This completes the proof. L

There are two shift operators acting on the set of all infinite sequences of
the Geronimus (Schur) parameters:

Sl(a0, a1, ...)=(a1, a2, a3, ...),

Sr(a0, a1, ...)=(a, a0, a1, ...), |a| < 1.

Denote by sl, jl, n, kl, n and sr, jr, n, kr, n the transformed measures and
orthonormal polynomials of the first and second kinds related to Sl and Sr,
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respectively.6 The explicit relations, which follow from the Szegő recurrence

6 The polynomials jl, n, kl, n are known as the associated polynomials.

relations, are known for these polynomial systems

2zjl, n(z)=jn+1(z)(k1(z)+kg
1 (z))+kn+1(z)(jg

1 (z) − j1(z)),

2zjg
l, n(z)=jg

n+1(z)(k1(z)+kg
1 (z))+kg

n+1(z)(j1(z) − jg
1 (z)),

(53)

and

2jr, n+1(z)=(jn(z)+kn(z)) j1, r(z)+(jn(z) − kn(z)) jg
1, r(z),

2jg
r, n+1(z)=(jg

n (z) − kg
n (z)) j1, r(z)+(jg

n (z)+kg
n (z)) jg

1, r(z),
(54)

where jg
n (z)=znjn(1/z̄) (see [25] regarding (53)).

Proposition 4.6. If s is a universal measure, then sl and sr are also
universal.

Proof. Let fn(fl, n, fr, n) and bn(bl, n, br, n) be the direct and inverse Schur
functions for s(sl, sr), respectively. We begin with the left shift operator
and use (53) to compute bl, n:

bl, n(z)=
jl, n(z)
jg
l, n(z)

=
z(1+a0)(jn+1(z)−kn+1(z))+(1+ā0)(jn+1(z)+kn+1(z))
z(1+a0)(jg

n+1(z)+kg
n+1(z))+(1+ā0)(jg

n+1(z)−kg
n+1(z))

.

In terms of the Wall polynomials we have (see [19, formulae (5.5)])

bl, n(z)=
(1+ā0) Bg

n (z) − (1+a0) Ag
n (z)

(1+a0) Bn(z) − (1+ā0) An(z)
,

bn+1(z)=
jn+1(z)
jg
n+1(z)

=
zBg
n (z) − Ag

n (z)
Bn(z) − zAn(z)

.

Next, it is clear that fl, n=fn+1, n \ 0, so that it seems natural to take the
difference

fl, n(z) bl, n(z) − fn+1(z) bn+1(z)

=fn+1(z)(bl, n(z) − bn+1(z))

=
fn+1(z)((1+ā0) − z(1+a0))

((1+a0) Bn(z) − (1+ā0) An(z))(Bn(z) − zAn(z))

× Bg
nBn − Ag

nAn=O(zn)
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in B. Therefore the sequences {fl, nbl, n}n \ 0 and {fnbn}n \ 0 have the same
limit points. This completes the proof for the operator Sl. The arguments
for the right shift operator Sr are quite the same. We use (54) to obtain

fr,n+1(z) br,n+1(z) − fn(z) bn(z)=O(zn)

in B. L

We see that the property ‘‘being universal’’ does not depend on a finite
number of the Geronimus parameters:

Corollary 4.7. Let the Geronimus parameters of two measures s,
m ¥P agree from some point on. Then the both are universal simultaneously.

Since every universal measure is singular, its Schur function is an inner
function. We show now that there are universal measures whose Schur
functions are Blaschke products (cf. [20, Corollary 1]).

Let ya(z)=(z+a)(1+āz)−1 be a Möbius transform, a ¥D. Given f ¥B

consider the composition f(a)=def ya p f. Since f(a) ¥B, there is a unique
s(a) in P such that f(a) is the Schur function of s(a).

Proposition 4.8. Let s ¥P be a universal measure with the Schur func-
tion f. Then for all a ¥D except for a set of logarithmic capacity zero,
s(a) ¥P are universal measures and their Schur functions f(a) are infinite
Blaschke products.

Proof. Let Sf=(a0, a1, ...). The idea is to compute explicitly the
Schur parameters of f(a). It is a matter of a routine (but rather lengthy)
calculation to verify that

f(a,z)=layt(zf1(z))=la
zf1(z)+t

1+t̄zf1(z)
,

where

t=ya0 (a)=
a+a0
1+ā0a

, la=
1+ā0a
1+a0 ā

, |la |=1,

and f1 is the first Schur function of f, Sf1=(a1, a2, ...). It is not hard to
see that

Sf(a)=lat, laa1, laa2, ... .

In view of Corollary 4.7 and Proposition 4.5, s(a) are universal for all
a ¥D. Now, an application of FrostmanŒs theorem (cf. [5, Theorem 6.4])
completes the proof. L
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5. THE CLASSES WHICH ARE ‘‘OPPOSITE’’ TO G.
AND SZEGŐ CLASS

We begin with the Cesàro version of MNT’s theorem [22, Theorem 4].
Let

In(z)=
1

|jn(z)|2
C
n

k=0
|jk(z)|2.

Theorem 5.1. For each s ¥ CN there exists a subset L … Z+ of density 1
such that

lim
n ¥ L

max
|z| [ 1

1
In(z)

=0. (55)

Conversely, if limn ¥ L 1/In(z0)=0 for some z0 ¥D and some subset L … Z+
of density 1, then s ¥ CN.

Proof. Consider the Szegő kernel

Kn+1(z, z)= C
n

k=0
jk(z) jk(z)=

jg
n (z) jg

n (z) − zz̄jn(z) jn(z)

1 − zz̄
,

where jg
n (z)=znjn(1/z̄). For |z| < 1 we have

1
In(z)

=
|jn(z)|2

Kn+1(z, z)
=

|jn(z)|2 (1 − |z|2)
|jg
n (z)|2− |zjn(z)|2

=
|bn(z)|2 (1 − |z|2)

1 − |zbn(z)|2
. (56)

We see that limn ¥ L 1/In(z0)=0 at z0 ¥D if and only if limn ¥ L bn(z0)=0.
Put L1=L 5 (L − 1), which is also of density 1. In the identity

bn+1(z0)=
z0bn(z0) − ān
1 − anz0bn(z0)

let n Q. with n ¥ L1. We conclude that limn ¥ L an=0, i.e., {an}n \ 0 is
almost convergent to zero. Hence s ¥ CN by Proposition 2.2.
Conversely, let s ¥ CN. We invoke the inequality (see [22, p. 58]))

max
|z| [ 1

|jn(z)|2

Kn+1(z, z)
[

2
M

+2 1 C
n

j=n−M
|aj−1 |2

2

, n \ M+1, (57)
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which holds for an arbitrary measure and an arbitrary positive integer M.
By Corollary 2.4 there is a subset L … Z+ of density 1, such that limn ¥ L

an−k=0 for every integer k. Hence by (57)

lim sup
n ¥ L

max
|z| [ 1

|jn(z)|2

Kn+1(z, z)
[

2
M

for every positive M, and the result follows immediately upon letting
M Q.. L

It is well known [10, formula (20.16)] that ;.

n=0 |jn(z0)|2 <. at each
mass point z0 ¥ T of a measure s ¥P. Hence limnQ. 1/In(z0)=0 at each
such point, so that the converse statement in Theorem 5.1 is false for
z0 ¥ T.

Theorem 5.1 says that in the Cesàro–Nevai class

lim sup
nQ.

In(z)=+.

uniformly on T. In other words, CN is contained in the class G. of
measures s ¥P with

Cs(z)=sup
n

In(z)=+. -z ¥ T. (58)

The formal opposite of condition (58) would look like

Cs(z) <. -z ¥ T. (59)

It turns out that there are no measures in P which satisfy (59) everywhere
on T. To show this, we need the following elementary result.

Lemma 5.2. Let {dn}n \ 0 be a sequence of positive numbers such that
d0=1 and

d0+d1+ · · · +dn < Ddn, n=0, 1, 2, ... (60)

for some D > 0. Then

1 D
D − 1
2n−1 < (D − 1) dn, n=1, 2, ... . (61)

Proof. It is clear from (60) with n=0 that D > 1. Note also that (60) is
equivalent to

d0+d1+ · · · +dn < (D − 1) dn+1, n=0, 1, 2, ... . (62)
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We prove (61) by induction. For n=1 (61) turns into (62). Suppose that
(61) holds for every n=1, 2, ..., k. Then, by the induction hypothesis

(D − 1) 11 D
D − 1
2k− 12=1+

D
D − 1

+1 D
D − 1
22+ · · · +1 D

D − 1
2k−1

< (D − 1) (d1+ · · · +dk),

which gives (61) with n=k+1 by (62). L

Proposition 5.3. For each s ¥P there is a point z=zs ¥ T with
Cs(z)=+..

Proof. We observe that Cs is lower semi-continuous and hence is Borel
measurable. Suppose, on the contrary, that there is a measure m ¥P such
that Cm is finite everywhere on T. Then, for k=2, 3, ..., the sets Fk=
{z ¥ T : Cm(z) [ k} form an increasing sequence of closed sets and

T=0
.

k=2
Fk.

An integer k clearly exists with m(Fk) > 0. We have

C
n

j=0
|jj(z)|2 < (k+1) |jn(z)|2

for all n \ 0 and all z ¥ Fk. By Lemma 5.2 we see that

1
k
1k+1

k
2n−1 < |jn(z)|2, n=1, 2, ... , z ¥ Fk. (63)

Upon integrating (63) with respect to m over Fk we arrive at the relation

1
k
1k+1

k
2n−1 m(Fk) < F

Fk
|jn |2 dm [ 1,

which leads to contradiction as n Q.. L

Definition. A measure s ¥P is said to belong to G0 (the opposite of
the G. class) if

Cs(z)=sup
n

In(z) <.

m-a.e. on T.
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Definition. A measure s ¥P is said to belong to OS (the opposite
Szegő class) if

C
.

n=0
(1 − |an |2)1/2 <., (64)

{an}n \ 0 being the Geronimus parameters of s.

The class OS is obviously nonempty, for it is defined in terms of inde-
pendent parameters an. In view of Proposition 5.3 the same conclusion for
the class G0 is not quite apparent. However it is not hard to derive some
properties of measures from G0.

Theorem 5.4. Every measure s ¥ G0 is singular.

Proof. We proceed in the same fashion as in the proof of Proposition
5.3. The only difference is that now

T=F 2 0
.

k=2
Fk, F=def {z ¥ T : Cs(z)=+.}.

Again, (63) is true for all n, k and z ¥ Fk. As above, we have

s(Fk) < k 1 k
k+1
2n−1 F

Fk
|jn |2 dm [ k 1 k

k+1
2n−1,

which gives s(Fk)=0 for every k=2, 3, ..., since n is an arbitrary positive
integer. Hence T=G 2 F with s(G)=m(F)=0, i.e., s is singular. L

Remark 5.5. The argument in the proof of Theorem 5.4 is of a quite
general nature and has nothing to do with the specific case of the unit
circle. As a matter of fact, the following statement concerning general
orthogonal polynomials is true.

Let K be a compact set of the complex plane C and n be a probability
measure on K. There exists a unique system of orthonormal polynomials
pn(z, n)=cnzn+..., cn > 0. If

sup
n

1
|pn(z, n)|2

C
n

k=0
|pk(z, n)|2 <.

m-a.e., where m is the normalized Lebesgue measure on K, then n is singu-
lar with respect to m.

The proof of G0 being nonempty is much more delicate. The following
result from the ergodic theory of inner functions is crucial for this.
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Lemma 5.6. Let J be an inner function with J(0)=0. Then J: T0 T is
a measure preserving endomorphism of the measure space (T, dm).

Proof. By Fatou’s theorem the boundary values of any inner function J
satisfy |J|=1 m-a.e. on T and hence J: T0 T is a measurable mapping of
the measure space (T, dm).

We define a linear operator U on the space of trigonometric polynomials
by Up(z)=p(J(z)). It is clear that Uzn=Jn(z), n ¥ Z, which implies

F
T

UznUzk dm=F
T

Jn−k(z) dm=Jn−k(0)=0

for n > k. Hence the operator U transforms the orthonormal basis {zn}n ¥ Z

into the orthonormal system {Jn}n ¥ Z in the Hilbert space L2(T). It follows
that U admits the extension to an isometric operator in L2(T) and for each
h ¥ L2(T)

F
T

|h p J|2 dm=F
T

|h|2 dm.

The result follows by putting h=1E with a measurable set E. L

Theorem 5.7. OS … G0.

Proof. Our starting point is the relation

: jk(z)
jk+1(z)
:2= 1 − |ak |2

|1 − akzbk(z)|2
, (65)

which is actually a direct consequence of the Szegő recurrencies for ortho-
normal polynomials on the unit circle. Let Ik be an open arc on T centered
at āk/|ak | of the circular length m(Ik)=10(1 − |ak |2)1/2, and let

Ek=
def {z ¥ T : zbk(z) ¥ Ik}, Eck=T0Ek.

Suppose that |ak | > 1/2 for k \ k0. It is a matter of routine computation to
verify that for w ¨ Ik and k \ k0

|1 − akw|2 > 4(1 − |ak |2).

Hence it follows from (65) that

: jk(z)
jk+1(z)
:2 <

1
4

, z ¥ Eck. (66)
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We claim that the set

W=def 3
.

s=1
0
.

j=s
Ej

has m-measure zero. Indeed, W …1.

j=s Ej for each s \ 1. But according to
Lemma 5.6 we have m(Ek)=m(Ik) and hence

m(W) [ m 10
.

j=s
Ej 2 [ C

.

j=s
m(Ej)=C

.

j=s
m(Ij) < 10 C

.

j=s
(1 − |aj |2)1/2 ,

which tends to zero as s Q., as claimed.
Thus m(Wc)=1 for

Wc=0
.

s=1
3
.

j=s
Ecj=lim inf

nQ.
Ecn.

The latter is the set of all points z such that z ¥ Ecn for all but finite number
of indices n. In other words, for each z ¥ Wc there is a positive integer l0(z)
such that z ¥ Ecl , l \ l0. Hence (66) holds for k \ l1=max(l0, k0). Put

M(z)=def max
0 [ k [ l1

: jk(z)
jk+1(z)
:2 <..

Then for n \ l1

In(z)=C
n

j=0

: jj(z)
jn(z)
:2= C

l1 −1

j=0

: jj(z)
jn(z)
:2+ C

n

j=l1

: jj(z)
jn(z)
:2

[ l1M l1(z)+C
.

j=0

11
4
2 j <..

The proof is complete. L

It is not hard to observe that the inclusion in Theorem 5.7 is proper. To
this end take any s ¥ OS with Geronimus parameters {an}n \ 0 and form the
so-called ‘‘sieved’’ measure ŝ with Geronimus parameters

â2n=an, â2n+1=0, n ¥ Z+ .

For the corresponding orthonormal polynomials we then have

ĵ2n(z)=jn(z2), ĵ2n+1(z)=zjn(z2).

It is easy to see by the definition of the classes G0 and OS that ŝ ¥ G0 0OS.
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The class OS has a nice interpretation in terms of Hessenberg matrices
(see (14)–(15)).

Theorem 5.8. s ¥ OS if and only if

U(s) − D0(s) ¥S1. (67)

Proof. Suppose first that s ¥ OS. We proceed as in the proof of [13,
Lemma 14]. The key idea is to show that series (16) converges in the trace
norm. We have

U(s) − D0(s)=VgD−1(s)+C
.

j=1
Dj(s) V j, (68)

where V, Vg are the shift operators and Dj(s) are the diagonal operators

Dj(s)=diag(u0j, u1, j+1, ...)

in the basis {jn}n \ 0. Then (64) implies Dj(s) ¥S1 for j=−1, 1, 2, ... .
Take a big enough N to obey

q=def C
.

n=N
(1 − |an |2)1/2 < 1

and let j > N. By (15)

|un, j+n | [ D
j+n−1

k=n
(1 − |ak |2)1/2

and

C
.

n=N
|un, j+n | [ C

.

n=N
D
j+n−1

k=n
(1 − |ak |2)1/2 [ q j−1 C

.

n=N
(1 − |an |2)1/2 [ q j.

Next, for n < N

|un, j+n | [ D
j−1

k=N
(1 − |ak |2)1/2 [ q j−N.

Hence ||Dj(s)||1=; n \ 0 |un, j+n | [ Nq j−N+q j, which means that the series
(68) converges in the trace norm and (67) holds.

Conversely, it follows from (67) that T=Vg(U − D0) ¥S1, so that

C
.

j=0
|(Tjj, jj)| [ ||T||1.
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(cf. [2, Lemma XI.9.13]). By the definition of V we have

(Tjj, jj)=((U − D0) jj, Vjj)=((U − D0) jj, jj+1)=(Ujj, jj+1)=uj+1, j,

and (64) follows, as claimed. L

The same argument leads to the following conclusion

C
.

n=0
(1 − |an |2)p/2 <.. U(s) − D0(s) ¥Sp, 0 < p <..

One may consider the opposite ON of Nevai’s class. Following the
convention accepted in the definition of OS, we can define ON as the
class of probability measures on T with limnQ. |an |=1 (cf. [14, p. 62]). By
Rakhmanov’s lemma [28, Lemma 4], every measure in ON is singular. As
in Theorem 5.8, it is not hard to ascertain that s ¥ ON if and only if
U(s) − D0(s) ¥S..

Assume now that for s ¥P the relation

C
.

n=0
(1 − |an |) <.

holds (the latter is true for all s ¥ OS). Then the zeros {lj, n}
n
j=1 of the

polynomials jn behave rather regularly. Specifically, they satisfy the
Blaschke condition

C
.

n=1
C
n

j=1
(1 − |lj, n |) <.. (69)

Indeed, by the equation |an−1 |=|l1, n | · · · |ln, n | we have

1 − |an−1 |=C
n

j=1
(1 − |lj, n |) |lj+1, n | · · · |ln, n | > |an−1 | C

n

j=1
(1 − |lj, n |),

so that (69) follows.
We complete the section with sort of strong asymptotics off the unit

circle that holds for the monic orthogonal polynomials in the OS class. Put
a−1=−1 and define for n ¥ Z+

yn=˛ −
ānan−1
|ānan−1 |

, for anan−1 ] 0,

1, for anan−1=0.
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Denote by Clos {y0, y1, ...,} the closure of the set {yn}n \ 0 on T.

Theorem 5.9. Let s ¥ OS with the monic orthogonal polynomials
{Fn}n \ 0. Then there is a holomorphic function H in the domain
Ĉ0Clos{y0, y1, ...,} with no zeros inside either components of Ĉ0T and such
that

lim
nQ.

Fn+1(z)
(z − y0)(z − y1) · · · (z − yn)

=H(z) (70)

uniformly on compact subsets of Ĉ0Clos {y0, y1, ...,}.

Proof. Put D̃=diag(y0, y1, ..., ) in the basis {jn}n \ 0. We state that
U(s) − D̃ ¥S1. By Theorem 5.8 it suffices to prove that D0(s) − D̃ ¥S1.
The latter is equivalent to the convergence of the series

C
.

n=0
|yn+ānan−1 |= C

.

n=0
(1 − |an | |an−1 |).

The statement now follows from (64) and the elementary inequality

1 − xy [ (1 − x2)+(1 − y2), 0 [ x, y [ 1.

An intimate relation between monic orthogonal polynomials and
Hessenberg matrices is well-known (cf. [1, pp. 193–194; 18])

Fn+1(z)=det(zIn − Un(s))

=det(zIn − D̃n) det(In+(zIn − D̃n)−1 (D̃n − Un(s)).

Here In, Un, Dn are n+1-dimensional truncated operators (see Section 1).
Observe that det(zIn − D̃n)=(z − y0) · · · (z − yn). By the basic property of
infinite determinants (cf. [11, p. 207])

lim
nQ.

Fn+1(z)
(z − y0)(z − y1) · · · (z − yn)

=H(z) (71)

uniformly on compact subsets of Ĉ0Clos{y0, y1, ...,}, where 7

7 Note that (AB)n=AnBn whenever A is a diagonal operator.

H(z)=det(I+(zI − D̃)−1 (D̃ − U(s))).

Next, it is clear that

lim
|z|Q.

||(zI − D̃)−1 (D̃ − U(s))||1=0,
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and hence H does not vanish in a neighborhood of .. On the other hand,

|H(0)|= lim
nQ.

|det(D−1
n Un)|= lim

nQ.
|det Un |= lim

nQ.
|Fn+1(0)|=1,

and hence H is not identically zero in D either.
Assume that H(z0)=0 for some z0 ¥D. Then by (71) and Hurwitz’s

theorem z0 is a limit point of the zeros of Fn. But the latter is incompatible
with (69). The same argument is applied to the exterior of the unit disk
(there are no zeros at all at the exterior of the unit disk). The proof is
complete. L

Example 5.10. Consider the so-called symmetric Wall measure on the
unit circle (cf. [31, p. 89]). This measure is known to be a pure point
measure with z=−1 being the only accumulating point of its support. The
Geronimus parameters are of the form

a2n=1 − 2bqn, a2n−1=1 − 2qn, 0 < b, q < 1, n=0, 1, ... .

Hence y0=1, yk=−1 for k \ 1 and (70) turns into

lim
nQ.

Fn+1(z)
(z − 1)(z+1)n

=H(z)

uniformly inside Ĉ0{ ± 1}, where jn are the symmetric Wall polynomials
on the unit circle.

6. SOME MORE RESULTS ON In

We begin with the mass points problem as posed in the introduction.

Theorem 6.1. Let s ¥ CN and z0 ¥ T. Then st (18) is also in CN.

Proof. Let F (t)n be the monic orthogonal polynomials in L2(st). It is
known (see [12, p. 36]) that

F (t)n+1(z)=Fn+1(z) −
sFn+1(z0) Kn+1(z, z0)

1+sKn+1(z0, z0)
, s=

t
1 − t

. (72)

Let a (t)n be the Geronimus parameters of st. By taking z=0 in (72) and
using the relation Kn+1(0, z0)=onj

g
n (z0) (see (11)) we come to

|a (t)n − an |=
s |Fn+1(z0) onjn(z0)|

1+sKn+1(z0, z0)
.
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But |Fn+1(z0)|=|z0Fn(z0) − ānF
g
n (z0)| [ 2 |Fn(z0)|, so that

|a (t)n − an | [
2s |jn(z0)|2

1+sKn+1(z0, z0)
<

2
In(z0)

. (73)

By Theorem 5.1 there exists a subset L … Z+ with d(L)=1 such that
1/In(z0) Q 0 as n Q. along L. By (73) we obtain

lim
n ¥ L

|a (t)n − an |=0, 0 [ t < 1.

As s ¥ CN, the sequence {an}n \ 0 is almost convergent to zero, and so is
{a (t)n }n \ 0 for all t ¥ [0, 1), which gives st ¥ CN. L

It is clear from (73) and MNT’s theorem that st ¥ N as long as
s ¥ N. The question arises whether the same is true for the intermediate
Rakhmanov’s class. We can prove this only for a certain proper subclass of
R that contains N.

Theorem 6.2. Let s ¥ R and assume that supn |an | < 1. Then

lim
nQ.

max
z ¥ T

1
In(z)

=0. (74)

In particular, st is a Rakhmanov measure for t ¥ [0, 1) as long as s=s0 is.

Proof. We proceed in three steps.

Step 1. The following property of the class R is worth mentioning.
Let s ¥ R with the Geronimus parameters {an}n \ 0. Fix a positive integer l
and consider the l-dimensional vector

vn={an+1, an+2, ..., an+l}.

Rearrange the entries in decreasing order of their moduli

vn={a −n+1, a −n+2, ..., a −n+l}, |a −n+1 | \ |a −n+2 | \ · · · \ |a −n+l |.

We wish to show that limnQ. |a −n+2 |=0.8 Indeed, assume that lim supnQ.

8 For s ¥ N we have limnQ. |a −n+1 |=0.

|a −n+2 |=2d > 0. Then for some subset L … Z+ and n ¥ L we have

|a −n+2 | > d, |a −n+1 | > d, |a −n+1 | |a
−

n+2 | > d2.

But the latter contradicts [19, Theorem 4], according to which limnQ.

anan+k=0 holds in the class R for each k=1, 2, ... .
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Step 2. The argument here is of general nature. Write

In(z)=
Kn+1(z, z)

|jn(z)|2
= C

n

k=0

: jn−k(z)
jn(z)
:2.

By (65)

: jj(z)
jj+1(z)
:2= 1 − |aj |2

|1 − ajzbj(z)|2
\

1 − |aj |
1+|aj |

,

and hence

: jn−k(z)
jn(z)
:2 \ D

k

j=1

1 − |an−j |
1+|an−j |

= D
n−1

p=n−k
h(|ap |), h(x)=def

1 − x
1+x

.

In terms of the rearranged values this inequality can be displayed as

: jn−k(z)
jn(z)
:2 \ D

n−1

p=n−k
h(|a −p |)=h(|a −n−k |) D

n−1

p=n−k+1
h(|a −p |).

The function h decreases from 1 to 0 on [0, 1]. If now supn |an | < r < 1,
then

: jn−k(z)
jn(z)
:2 \ h(r) hk−1(|a −n−k+1 |).

Take a positive integer N and let n > N. We have

In(z) \ C
N

k=0

: jn−k(z)
jn(z)
:2 \ h(r) C

N

k=0
hk−1(|a −n−k+1 |).

By Step 1 the right-hand side tends to h(r)(N+1) as n Q., and since N is
arbitrary and h(r) > 0, we conclude that

lim
nQ.

min
z ¥ T

In(z)=+.,

which is equivalent to (74).

Step 3. To prove the last statement note that (73) and (74) imply

lim
nQ.

|a (t)n − an |=0, lim
nQ.

|a (t)n a (t)n+k − anan+k |=0

for each k=1, 2, ... . The result then follows from [19, Theorem 4]. L
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By comparing Theorem 6.2 with MNT’s theorem we see that, for mea-
sures s ¥ R0N (all of them are singular by [19, Corollary 2.6]) with
supn |an | < 1, (74) holds but 1/In tends to zero at no point in D.

In the same fashion as Theorem 6.1, the following result can be estab-
lished.

Theorem 6.3. Given s ¥P and z0 ¥ T, define dm=C |z − z0 |2 ds ¥P,
where C is a normalizing positive factor. Then m is in the CN class as long as
s is.

There is a nice formula which relates In to the zeros l1n, l2n..., lnn of
orthogonal polynomials jn. As is known, |lkn | < 1 for all n=1, 2, ... and
k=1, 2, ..., n. Let us denote by ẋ the derivative of a function x on T with
respect to the arc length, i.e., ẋ=“x/“J. We have

“

“J

e iJ− l

1 − l̄e iJ
=ie iJ

1 − |l|2

(1 − l̄e iJ)2
=ie iJ

1 − l̄e iJ

1 − l̄e iJ
1 − |l|2

|1 − l̄e iJ|2
=i

e iJ− l

1 − l̄e iJ
1 − |l|2

|1 − l̄e iJ|2
.

Now, letting bn(z)=e ian(z), we see that

ȧn(z)=C
n

j=1

1 − |ljn |2

|z − ljn |2
. (75)

Hence any continuous branch an of the argument of the Blaschke product
bn(z) increases as z moves along T counterclockwise.

Theorem 6.4. For every s ¥P and n ¥ Z+ the relation

In(z)=1+C
n

j=1

1 − |ljn |2

|z − ljn |2
(76)

holds.

Proof. By (56)

In(z)=
1 − |zbn(z)|2

(1 − |z|2) |bn(z)|2
. (77)

It is clear that

zbn(z)=D
n

j=0
bjn(z), bjn(z)=

z − ljn

1 − l̄jnz
, l0n=0.
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Since

1 − |zbn(z)|2=C
n

j=0
|b0(z) b1(z) · · · bj−1(z)|2 (1 − |bj(z)|2)

we have by (77)

In(z)= lim
rQ 1−0

1 − |rzbn(rz)|2

(1 − r2) |bn(rz)|2
=1+C

n

j=1
lim
rQ 1−0

1 − |rzbjn(rz)|2

1 − r2
.

It is a matter of the routine computation to verify that

lim
rQ 1−0

1 − |rzbjn(rz)|2

1 − r2
=

1 − |ljn |2

|z − ljn |2
,

and (76) is proved. L

It follows from (75) and (76) that for z ¥ T

In(z)=1+ȧn(z), (78)

which is (19). By the definition of the class G0 we see that supn ȧn <.
m-a.e. for each s ¥ G0.

To examine the convergence of

ȧn(z)
n

=
1

n |jn(z)|2
C
n−1

k=0
|jk(z)|2 , (79)

we need the following simple result.

Lemma 6.5. Let {hn} be a sequence of nonnegative measurable functions
on a probability space (X, n), and let hn S 1 in measure as n Q. and

F
X

hn dn=1, -n=1, 2, ... .

Then hn Q 1 in L1(n).

Proof. Given e > 0 put En(e)=def {x ¥ X : |hn − 1| > e}. By the hypothesis
of the lemma n(En) Q 0 as n Q.. We have

F
X

|hn − 1| dn [ e+F
En

|hn − 1| dn

[ e+n(En)+F
En

hn dn=e+2n(En)+F
En

(hn − 1) dn.
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But

: F
En

(hn − 1) dn:=: F
Ecn

(hn − 1) dn: [ F
Ecn

|hn − 1| dn [ e,

so that by letting n Q. we see that

lim sup
nQ.

F
X

|hn − 1| dn [ 2e.

The rest is plain. L

Proposition 6.6. For each Erdős measure s (i.e., sŒ > 0 m-a.e. on T)
the relation

lim
nQ.

F
T

: ȧn(z)
n

− 1: dm=0

holds.

Proof. By [23, Corollary 2.2], in the Erdős class

lim
nQ.

F
T

| |jn(z)|2sŒ− 1| dm=0,

which implies that |jn |2S 1/sŒ in measure m on T. Hence ȧn/n S 1 by
(79). Next,

F
T

ȧn(z) dm=n

by (75), and application of Lemma 6.5 completes the proof. L

Given z ¥ T and s > 0, consider the set

Ws(z)=3z :
|z − z|2

1 − |z|2
< s4 ,

on the complex plane, which is known as oricycle. It is clear that {Ws}s > 0 is
an increasing family of disks inside the unit disk which touch it at the point
z, and D=1s > 0 Ws(z). Relation (76) leads to the following rather curious
conclusion about the zeros distribution of orthogonal polynomials on the
unit circle.
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Proposition 6.7. Let C=supn In(z0) <.. Then the number of zeros of
jn on each oricycleWs(z0) is uniformly bounded in n.

Proof. Let Ln=
def {l1n, l2n..., lnn}. By (76)

C > C
n

j=1

1 − |ljn |2

|z − ljn |2
\ C
ljn ¥Ws(z)

1 − |ljn |2

|z − ljn |2
>

1
s

Card(Ln 5 Ws(z0)),

as needed. L

Note that nonasymptotic results can be obtained provided we know a
quantitative bound for In. For instance, if, say, In(1) [ 2 for all n then there
are no zeros of jn in the oricycle W1(1) (and, in particular, in the interval
[0, 1]).
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